Further Spitzer’s law for widely orthant dependent random variables
نویسندگان
چکیده
Abstract The Spitzer’s law is obtained for the maximum partial sums of widely orthant dependent random variables under more optimal moment conditions.
منابع مشابه
The inverse moment for widely orthant dependent random variables
In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let {Zn,n≥ 1} be a sequence of nonnegative WOD random variables, and {wni , 1≤ i≤ n,n≥ 1} be a triangular array of nonnegative nonrandom weights. If the first moment is finite, then E(a + ∑n i=1wniZi) –α ∼ (a +∑ni=1wniEZi)–α for all constants a > 0 and α > 0. If the rth m...
متن کاملRosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables
In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.
متن کاملPrecise large deviations for widely orthant dependent random variables with different distributions
Let [Formula: see text] be a sequence of random variables with different distributions [Formula: see text]. The partial sums are denoted by [Formula: see text], [Formula: see text]. This paper mainly investigates the precise large deviations of [Formula: see text], for the widely orthant dependent random variables [Formula: see text]. Under some mild conditions, the lower and upper bounds of th...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2021
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-021-02718-4